Bearings and Related Products for Continuous Casting Machines
Introduction

In continuous casting machines, roll support bearings are used under heavy loads and at extremely low speed. In addition, the operating conditions are severe, resulting in exposure to splashing water and scales.

Accordingly, roll support bearings may be failed in an extremely short period of time, typically due to wear and cracking.

To solve these problems, JTEKT has developed a series of products optimized to support the rolls of continuous casting machines, including bearings, oil seals, HSC (Half Split Cylindrical Roller) bearing units and Oil/Air lubrication systems, providing a systematic solution for extending the service life of bearings in this application.

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1. Failure mechanism of Bearing</td>
<td>2</td>
</tr>
<tr>
<td>2. High performance Products and Their Features</td>
<td></td>
</tr>
<tr>
<td>(1) Roll support bearings</td>
<td>3</td>
</tr>
<tr>
<td>(2) HSC bearing units with half round outer ring</td>
<td>4</td>
</tr>
<tr>
<td>(3) Oil seals for roll support housings</td>
<td>5</td>
</tr>
<tr>
<td>(4) Oil/Air lubrication system</td>
<td>6</td>
</tr>
<tr>
<td>3. Dimensions Tables</td>
<td></td>
</tr>
<tr>
<td>SC and SCP Bearings</td>
<td>7</td>
</tr>
<tr>
<td>HSC Bearing Units with Half round Outer Ring</td>
<td>9</td>
</tr>
</tbody>
</table>

Typical Arrangement of Roll Support Bearings in Continuous Casting Machines

![Diagram of roll support bearings in continuous casting machines]
1. Failure mechanism of Bearing

In continuous casting machines, rolls are loaded under excessively heavy loads and may be bent considerably. Accordingly, to support the rolls, spherical roller bearings, which have a self-aligning, are commonly used.

JTEKT has performed a variety of verification tests and analyses concerning this application, and concluded that differential slip occurs in the spherical roller bearings on the rolls of the continuous casting machines when excessively heavy loads at extremely low speed are imposed on the bearings under severe lubrication conditions (Refer to Fig. 1). JTEKT therefore recommends full complement cylindrical roller bearings for this application.

- **Spherical roller bearing**

 - Contact surface between roller and outer ring

 When a spherical roller bearing is loaded, elastic deformation occurs on the contact surface between each roller and bearing raceway, producing an elliptical contact surface. This oval surface causes differential slip, which is attributed to the rolling mechanism of the spherical roller bearing.

 Under normal load conditions, this differential sliding is negligible. However, under the excessively heavy loads, the major axis of the contact ellipse may become excessively enlarged, resulting in an increase in slip rate.

- **Cylindrical roller bearing**

 - Contact surface between roller and outer ring

 When a cylindrical roller bearing is used to carry the loads, differential slip does not occur on the contact surface.

![Fig. 1 Typical Failure Mechanism of Roll Support Bearing in Continuous Casting Machines](image1)

![Fig. 2 Differential Slip of Spherical Roller Bearing](image2)

![Fig. 3 Typical failure to Spherical Roller Bearings Supporting the Rolls of Continuous Casting Machines](image3)
2. High performance Products and Their Features

(1) Roll support bearings

Compared with spherical roller bearings, cylindrical roller bearings do not produce differential slip on the contact surface between each roller and bearing raceway under the excessively heavy loads, delaying the development of wear and thus extending bearing service life.

This bearing is designed based on a full complement cylindrical roller bearing, with reference to maximized static load ratings. Crowning are set up on rolling surface of its rollers, according to the size of loads, which contributes to solve stress concentration at specific location. The ribs provided for the inner and outer rings and loose rib, adjacent to the inner ring, accommodate axial loads.

SC bearing at free side

To accommodate thermal roll contraction and expansion, the inner ring of this bearing are designed to move smoothly in the axial direction.

Fig. 6 Advantages of Roller Crowning According to the Size of Heavy Loads

<table>
<thead>
<tr>
<th>Crowning according to size of Heavy Loads</th>
<th>Standard crowning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(No stress concentration at specific locations)</td>
<td>(stress concentration at specific locations)</td>
</tr>
</tbody>
</table>

Fig. 4 Advantages of Cylindrical Roller Bearings

Fig. 5 SCP Bearing Structure

Fig. 7 SC Bearing Structure

Fig. 8 SC Bearing Functions
(2) HSC bearing units with half-round outer ring

This unit is designed to support the rolls of continuous casting machines at their middle position under heavy loads, and has high cooling efficiency.

This unit has unique structure, with a half-round outer ring placed on the loaded side only.

This special half-round outer ring and compact seal design realizes a 15% increase in static load rating over that of conventional products.

The outside diameter surface of the outer ring is finished spherically, providing a self aligning to the housing.

The roller length is maximized thanks to the compact seal design and the roller diameter is optimized by using a half-round outer ring, realizing a maximal static load rating.

The unique jacket design adjusts the flow of water and enables a high cooling efficiency, equivalent to that of conventional products with a lower water flow rate of 55%.
2. High performance Products and Their Features

(3) Oil seals for roll support housings

This oil seal is applied for non grease evacuated type (Called Seal Out Type) housing. The standard material of seal rubber is H-NBR, which well resists to high temperature and stable under steam.

For the roll barrel side, the GE type seal having a dust lip that securely prevents the ingress of water and scales is recommended. For the roll end side, the ME type seal with a dust lip is recommended.

(4) Oil/Air lubrication system

This system supplies lubrication oil into the housing by means of compressed air. Therefore, the internal pressure of the housing is essentially high, preventing the ingress of contaminants.

This lubrication method is the most suitable for bearings used under severe environments where they may be exposed to scattering water and scales.

JTEKT supplies Oil/Air lubrication systems. Please contact JTEKT for further details.

All these oil seals have a main lip equipped with a spring, delaying deterioration in sealing performance due to thermal rubber deformation. The bumper lip adjacent to the main lip distributes contact stress on the roll, delaying roll wear and thus extending sealing durability.

Oil seals applied for grease evacuated type (Called Seal In Type) housing are also available from JTEKT. Please contact JTEKT for further details.

Features of Oil/Air lubrication system

- Low environmental pollution
 - Oil emissions to the atmosphere are low, realizing a clean work environment.

- Prevention of contaminants ingress into the housing
 - Compared with oil mist lubrication and grease lubrication, this system provides the housing interior with a higher pressure, essentially preventing the ingress of contaminants.

- Less restrictions for piping
 - Restrictions on pipe branching are lessened compared with oil mist lubrication.

- Lubrication oil saving
 - Consumption of lubrication oil is reduced.
3. Dimensions Tables

SC Bearings and SCP Bearings

![SC Bearing (Free side)](image)

<table>
<thead>
<tr>
<th>Boundary Dimensions (mm)</th>
<th>Acceptable roll heat expansion (mm)</th>
<th>Basic Load Ratings (kN)</th>
<th>Bearing No.</th>
<th>Mass (kg)</th>
<th>Corresponding Spherical Roller Bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>D</td>
<td>B</td>
<td>$r_{(\text{Min.})}$</td>
<td>C_T</td>
<td>C_{Or}</td>
</tr>
<tr>
<td>50</td>
<td>110</td>
<td>40</td>
<td>2</td>
<td>±4.5</td>
<td>164</td>
</tr>
<tr>
<td>55</td>
<td>90</td>
<td>32</td>
<td>1.1</td>
<td>±3.5</td>
<td>89.9</td>
</tr>
<tr>
<td>65</td>
<td>120</td>
<td>31</td>
<td>1.5</td>
<td>±4</td>
<td>118</td>
</tr>
<tr>
<td>70</td>
<td>140</td>
<td>48</td>
<td>2.1</td>
<td>±5.5</td>
<td>238</td>
</tr>
<tr>
<td>75</td>
<td>150</td>
<td>31</td>
<td>1.5</td>
<td>±5</td>
<td>129</td>
</tr>
<tr>
<td>85</td>
<td>160</td>
<td>65</td>
<td>3</td>
<td>±6</td>
<td>280</td>
</tr>
<tr>
<td>90</td>
<td>160</td>
<td>40</td>
<td>2</td>
<td>±4.5</td>
<td>240</td>
</tr>
<tr>
<td>100</td>
<td>160</td>
<td>56</td>
<td>2</td>
<td>±9</td>
<td>242</td>
</tr>
<tr>
<td>110</td>
<td>170</td>
<td>45</td>
<td>2</td>
<td>±5.5</td>
<td>220</td>
</tr>
<tr>
<td>120</td>
<td>180</td>
<td>54</td>
<td>2</td>
<td>±12</td>
<td>246</td>
</tr>
<tr>
<td>130</td>
<td>200</td>
<td>69</td>
<td>2</td>
<td>±9</td>
<td>381</td>
</tr>
<tr>
<td>140</td>
<td>210</td>
<td>64</td>
<td>2</td>
<td>±10</td>
<td>443</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bearing No.</th>
<th>Basic Load Ratings (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC121321V-1A</td>
<td>1.7</td>
</tr>
<tr>
<td>SC131448VA</td>
<td>4.0</td>
</tr>
<tr>
<td>SC151331V-1A</td>
<td>1.9</td>
</tr>
<tr>
<td>SC171656VA</td>
<td>5.4</td>
</tr>
<tr>
<td>SC181640-1VA</td>
<td>3.8</td>
</tr>
<tr>
<td>SC211656VA</td>
<td>4.4</td>
</tr>
<tr>
<td>SC221745V-2A</td>
<td>4.1</td>
</tr>
<tr>
<td>SC221760V-1A</td>
<td>5.5</td>
</tr>
<tr>
<td>SC221764VA</td>
<td>5.8</td>
</tr>
<tr>
<td>SC221856V-8A</td>
<td>6.1</td>
</tr>
<tr>
<td>SC221869V-3A</td>
<td>7.6</td>
</tr>
<tr>
<td>SC241846V-2A</td>
<td>4.5</td>
</tr>
<tr>
<td>SC241854VA</td>
<td>5.0</td>
</tr>
<tr>
<td>SC241856/46VA</td>
<td>5.2</td>
</tr>
<tr>
<td>SC241858VA</td>
<td>5.4</td>
</tr>
<tr>
<td>SC241860V-1A</td>
<td>5.8</td>
</tr>
<tr>
<td>SC242080VA</td>
<td>11.1</td>
</tr>
<tr>
<td>SC262069V-1A</td>
<td>8.7</td>
</tr>
<tr>
<td>SC262079/69VA</td>
<td>9.6</td>
</tr>
<tr>
<td>SC262164VA</td>
<td>9.2</td>
</tr>
<tr>
<td>SC262180V-2A</td>
<td>11.9</td>
</tr>
<tr>
<td>SC262346V-2A</td>
<td>12.5</td>
</tr>
<tr>
<td>SC262169/RVA</td>
<td>8.8</td>
</tr>
<tr>
<td>SC282368/RVA</td>
<td>11.1</td>
</tr>
<tr>
<td>SC282385V-1A</td>
<td>14.4</td>
</tr>
<tr>
<td>SC3025100V-1A</td>
<td>21.9</td>
</tr>
<tr>
<td>SC302796VA</td>
<td>26.2</td>
</tr>
</tbody>
</table>

Note: * indicates width of outer ring and inner ring, respectively.
Boundary Dimensions

![SCP Bearing (Fixed side)]

SC Bearings (Free side)

<table>
<thead>
<tr>
<th>Boundary Dimensions (mm)</th>
<th>Acceptable roll heat expansion (mm)</th>
<th>Basic Load Ratings (kN)</th>
<th>Bearing No.</th>
<th>Mass (kg)</th>
<th>Corresponding Spherical Roller Bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C_T</td>
<td>C_{0T}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>240</td>
<td>80</td>
<td>2.1</td>
<td>±13</td>
<td>SC322480-2VA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20032RH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4790</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1270</td>
</tr>
<tr>
<td>170</td>
<td>270</td>
<td>109</td>
<td>2.1</td>
<td>±13.5</td>
<td>SC3227109VA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24132RH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1070</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1890</td>
</tr>
<tr>
<td>180</td>
<td>340</td>
<td>114</td>
<td>4</td>
<td>±13</td>
<td>SC324114VA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22332RHA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1420</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1940</td>
</tr>
<tr>
<td>190</td>
<td>340</td>
<td>114</td>
<td>4</td>
<td>±15</td>
<td>SC3231212V-1A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23236RHA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1320</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2170</td>
</tr>
<tr>
<td>200</td>
<td>340</td>
<td>112</td>
<td>3</td>
<td>±16</td>
<td>SC3834120V-1A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23238RHA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1490</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2470</td>
</tr>
<tr>
<td>220</td>
<td>340</td>
<td>140</td>
<td>3</td>
<td>±19</td>
<td>SC4437150VA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24144RHA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1920</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3550</td>
</tr>
</tbody>
</table>

SCP Bearings (Fixed side)

<table>
<thead>
<tr>
<th>Boundary Dimensions (mm)</th>
<th>Acceptable roll heat expansion (mm)</th>
<th>Basic Load Ratings (kN)</th>
<th>Bearing No.</th>
<th>Mass (kg)</th>
<th>Corresponding Spherical Roller Bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C_T</td>
<td>C_{0T}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>150</td>
<td>65</td>
<td>3</td>
<td>—</td>
<td>SCP171565VA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24217RHB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>370</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>558</td>
</tr>
<tr>
<td>90</td>
<td>160</td>
<td>40</td>
<td>2</td>
<td>—</td>
<td>SCP181640V-1A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22218RHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>298</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>381</td>
</tr>
<tr>
<td>100</td>
<td>160</td>
<td>52.4</td>
<td>1.1</td>
<td>—</td>
<td>SCP181652V-2A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23218RHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>336</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>482</td>
</tr>
<tr>
<td>110</td>
<td>170</td>
<td>45</td>
<td>2</td>
<td>—</td>
<td>SCP221745V-2A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23022RH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>486</td>
</tr>
<tr>
<td>120</td>
<td>180</td>
<td>69</td>
<td>2</td>
<td>—</td>
<td>SCP221869V-3A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24122RH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>469</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>778</td>
</tr>
<tr>
<td>130</td>
<td>180</td>
<td>53</td>
<td>2.1</td>
<td>—</td>
<td>SCP222053VA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22222RHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>491</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>642</td>
</tr>
<tr>
<td>140</td>
<td>200</td>
<td>52</td>
<td>2</td>
<td>—</td>
<td>SCP241846V-2A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24124RHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>314</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>524</td>
</tr>
<tr>
<td>150</td>
<td>200</td>
<td>69</td>
<td>2</td>
<td>—</td>
<td>SCP262052V-1A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23026RHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>314</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>674</td>
</tr>
<tr>
<td>160</td>
<td>210</td>
<td>80</td>
<td>2</td>
<td>—</td>
<td>SCP262180V-2A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24126RHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>605</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1020</td>
</tr>
<tr>
<td>180</td>
<td>220</td>
<td>53</td>
<td>2</td>
<td>—</td>
<td>SCP282153V-1A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23028RHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>422</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>723</td>
</tr>
<tr>
<td>190</td>
<td>225</td>
<td>85</td>
<td>2.1</td>
<td>—</td>
<td>SCP282385V-1A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24128RHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>702</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1220</td>
</tr>
<tr>
<td>200</td>
<td>225</td>
<td>75</td>
<td>2</td>
<td>—</td>
<td>SCP303273V-4A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2430RHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>593</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1100</td>
</tr>
<tr>
<td>220</td>
<td>320</td>
<td>112</td>
<td>4</td>
<td>—</td>
<td>SCP3632112V-1A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23236RHA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1320</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2170</td>
</tr>
<tr>
<td>230</td>
<td>290</td>
<td>100</td>
<td>2.1</td>
<td>—</td>
<td>SCP3829100V-1A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24038RHA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1920</td>
</tr>
<tr>
<td>240</td>
<td>320</td>
<td>128</td>
<td>4</td>
<td>—</td>
<td>SCP3832128V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24138RHA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1460</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2630</td>
</tr>
</tbody>
</table>
3. Dimensions Tables

HSC bearing Units with Half-round Outer Ring

<table>
<thead>
<tr>
<th>Roll Dia. (mm)</th>
<th>Boundary Dimensions (mm)</th>
<th>1) Housing No.</th>
<th>2) Bearing No.</th>
<th>Acceptable roll heat expansion (mm)</th>
<th>Basic Load Ratings (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>d</td>
<td>B</td>
<td>H</td>
<td>D1</td>
<td>D2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>195</td>
<td>100</td>
<td>145</td>
<td>175</td>
<td>133</td>
<td>143</td>
</tr>
<tr>
<td>220</td>
<td>110</td>
<td>139</td>
<td>225</td>
<td>155</td>
<td>168</td>
</tr>
<tr>
<td>225</td>
<td>110</td>
<td>139</td>
<td>225</td>
<td>155</td>
<td>168</td>
</tr>
<tr>
<td>230</td>
<td>110</td>
<td>113</td>
<td>185</td>
<td>160</td>
<td>173</td>
</tr>
<tr>
<td>235</td>
<td>110</td>
<td>113</td>
<td>185</td>
<td>160</td>
<td>173</td>
</tr>
<tr>
<td>240</td>
<td>110</td>
<td>150</td>
<td>190</td>
<td>160</td>
<td>173</td>
</tr>
<tr>
<td>250</td>
<td>110</td>
<td>154</td>
<td>180</td>
<td>160</td>
<td>173</td>
</tr>
<tr>
<td>255</td>
<td>110</td>
<td>154</td>
<td>180</td>
<td>160</td>
<td>173</td>
</tr>
<tr>
<td>260</td>
<td>110</td>
<td>145</td>
<td>175</td>
<td>175</td>
<td>186.5</td>
</tr>
<tr>
<td>265</td>
<td>110</td>
<td>202</td>
<td>251</td>
<td>160</td>
<td>175</td>
</tr>
<tr>
<td>270</td>
<td>110</td>
<td>173</td>
<td>230</td>
<td>165</td>
<td>180</td>
</tr>
<tr>
<td>275</td>
<td>110</td>
<td>173</td>
<td>230</td>
<td>165</td>
<td>180</td>
</tr>
<tr>
<td>280</td>
<td>110</td>
<td>202</td>
<td>251</td>
<td>160</td>
<td>175</td>
</tr>
<tr>
<td>285</td>
<td>110</td>
<td>202</td>
<td>251</td>
<td>160</td>
<td>175</td>
</tr>
<tr>
<td>290</td>
<td>110</td>
<td>173</td>
<td>230</td>
<td>165</td>
<td>180</td>
</tr>
<tr>
<td>295</td>
<td>110</td>
<td>173</td>
<td>230</td>
<td>165</td>
<td>180</td>
</tr>
<tr>
<td>300</td>
<td>110</td>
<td>202</td>
<td>251</td>
<td>160</td>
<td>175</td>
</tr>
<tr>
<td>305</td>
<td>110</td>
<td>173</td>
<td>230</td>
<td>165</td>
<td>180</td>
</tr>
<tr>
<td>310</td>
<td>110</td>
<td>173</td>
<td>230</td>
<td>165</td>
<td>180</td>
</tr>
<tr>
<td>315</td>
<td>110</td>
<td>202</td>
<td>251</td>
<td>160</td>
<td>175</td>
</tr>
<tr>
<td>320</td>
<td>110</td>
<td>173</td>
<td>230</td>
<td>165</td>
<td>180</td>
</tr>
</tbody>
</table>

Notes:
1) The housing numbers do not include a bearing.
2) * indicates a special design.
GLOBAL NETWORK
BEARING BUSINESS OPERATIONS

JTEKT CORPORATION NAGOYA HEAD OFFICE
No.1-1, Asahimachi, Kariya, Aichi 448-8652, JAPAN
(move to Midland Square at Meieki 4-chome, Nakamura-ku, Nagoya, is planned for Dec. 2006)
TEL: 81-566-25-5111
FAX: 81-566-25-5470

JTEKT CORPORATION OSAKA HEAD OFFICE
Sales & Marketing Headquarters
No.5-8, Minamisemba 3-chome, Chuo-ku, Osaka 542-8502, JAPAN
TEL: 81-6-6245-6087
FAX: 81-6-6244-9007

OFFICES

KOYO CANADA INC.
5324 South Service Road, Burlington, Ontario L7L 5H5, CANADA
TEL: 1-905-681-1121
FAX: 1-905-681-1392

KOYO CORPORATION OF U.S.A.
-Cleveland Office-
29570 Clemens Road, P.O.Box 45028 Westlake, OH 44145, U.S.A.
TEL: 1-440-835-1000
FAX: 1-440-835-9347

-Detroit Office-
47771 Halyard Drive, Plymouth, MI 48170, U.S.A.
TEL: 1-734-454-1500
FAX: 1-734-454-4076

KOYO MÉXICANA, S.A. DE C.V.
Río Nazas No.171, 1er piso, Col. Cuauhtemoc, México, D.F. C.P. 06500, MÉXICO
TEL: 52-55-5207-3860
FAX: 52-55-5207-3873

KOYO LATIN AMERICA, S.A.
Edificio Banco del Pacifico Planta Baja, Calle Aquilino de la Guardia y Calle 52, Panama, REPUBLICA DE PANAMA
TEL: 507-208-5900
FAX: 507-264-2782/507-269-7578

KOYO ROLAMENTOS DO BRASIL LTDA.
Rua Desembargador Eliseu Ghilherme 304,7-Ander,Paraiso CEP 04004-30, BRASIL
TEL: 55-11-3887-9173
FAX: 55-11-3887-3039

JTEKT (THAILAND) Co., Ltd.
172 Moo 12 Tambol Bangwua, Amphur Bangpakong, Chachoengsao 24180, THAILAND
TEL: 66-38-533-310-7
FAX: 66-38-532-776

KOYO SINGAPORE BEARING (PTE.) LTD.
#09-01, C&I Logistics Hub2,27, Penjuru Lane, SINGAPORE, 609195
TEL: 65-6274-2200
FAX: 65-6862-1623

-India Branch-
1104, GD-ITL Tower, B-08, NETAJI SUBHASH PLACE, PITAM PURA, DELHI 110034 INDIA
TEL: 91-11-2735-3502 / 04 91-11-5537-4803 A 04
FAX: 91-11-2715-3501

PHILIPPINE KOYO BEARING CORPORATION
Rm.504, Comfoods Bldg., Cor. Gil Puyat Ave. and Piasong Tamo, Makati City, PHILIPPINES
TEL: 63-2-817-8891 / 8901
FAX: 63-2-867-3148

JTEKT KOREA CO., LTD.
Inwoo Building 6F, 539-11, Shinma-Dong, Kangnam-Ku, Seoul, KOREA
TEL: 82-2-549-7922
FAX: 82-2-549-7923

JTEKT CORPORATION BEIJING LIAISON OFFICE
Room 1108 Tower-B Winterless-Center, No.1 Xidawang-Road, Chaoyang-District, Beijing, CHINA
TEL: 86-10-6538-8070
FAX: 86-10-6538-8077

KOYO (SHANGHAI) CO., LTD.
Rm.1905, Aetna Tower, 107 Zunyi Road, Shanghai 200051, CHINA
TEL: 86-21-6237-5280
FAX: 86-21-6237-5277

JTEKT CORPORATION SHANGHAI LIAISON OFFICE
Rm.1907, Aetna Tower, 107 Zunyi Road, Shanghai 200051, CHINA
TEL: 86-21-6237-5280
FAX: 86-21-6237-5277

KOYO AUSTRALIA PTY. LTD.
Unit 7, 175-179 James Ruse Drive, Rosehill, N.S.W. 2142, AUSTRALIA
TEL: 61-2-9638-2355
FAX: 61-2-9638-3368

JTEKT CORPORATION EUROPEAN BEARING CENTRAL OFFICE
Markerkant 13-01, 1314 AN Almere, THE NETHERLANDS
TEL: 31-36-533833
FAX: 31-36-5347212

KOYO KULLAGER SCANDINAVIA A.B.
Johanneslundsvagen 4 194 61 Upplands Väsby, SWEDEN
TEL: 46-8-594-212-10
FAX: 46-8-594-212-29

KOYO (U.K.) LTD.
Whitehall Avenue, Kingston, Milton Keynes MK10 OAX, UNITED KINGDOM
TEL: 44-1908-289300
FAX: 44-1908-289333

EUROPA-KOYO B.V.
Lekdijk 187, 2967 GJ Langerak, THE NETHERLANDS
TEL: 31-184-606800
FAX: 31-184-602572/606857

KOYO ROMANIA REPRESENTATIVE OFFICE
Str. Frederic Jolliot-Cure, Nr.3, Etaj 1, Ap.2, Sector 5 Bucharest, ROMANIA
TEL: 40-21-410-4170/4182/0984
FAX: 40-21-410-1178

KOYO DEUTSCHLAND GMBH.
Bargkoppelweg 4, D-22145 Hamburg, GERMANY
TEL: 49-40-67-9090-0
FAX: 49-40-67-9203-0

KOYO FRANCE S.A.
8 Rue Guy Moquet, B.P. 189 Z.I., 95105 Argenteuil Cedex, FRANCE
TEL: 33-1-3998-4202
FAX: 33-1-3998-4244/4249

KOYO IBERICA, S.L.
Avda. da la Industria, 52-2 Izda, 1ª Ap. 2, Sector 5, 28820 Coslada Madrid, SPAIN
TEL: 34-91-329-0818
FAX: 34-91-747-1194

KOYO ITALIA S.R.L.
Via Bronzino 9, 20133 Milano, ITALY
TEL: 39-02-2951-0844
FAX: 39-02-2951-0854

The contents of this catalog are subject to change without prior notice.
Every possible effort has been made to ensure that the data listed in this catalog is correct.
However, we can not assume responsibility for any errors or omissions.
Value & Technology